MIFON X1 电竞路由器 星辰白
MIFON X1电竞路由器
MIFON X1S 电竞路由器 满血红
F1 4K智能电视盒子
F1C 4K智能电视盒子
SDH传输系统经过近十年的商用,线路速率从最初的155Mbit/s系统已经发展到了现在10Gbit/s,每一次传输网速度跃变间隔的时间越来越短。10Gbit/s光传输系统已经被大多数运营商应用到骨干网络,那么离40Gbit/s系统大面积商用还有多远呢?
一、40Gbit/s光纤传输系统需求分析
目前各网络运营商对网络建设的考虑更加理性化,除了考虑网络的容量安全等问题外,对网络建设和维护成本的敏感程度在逐渐提高。因此在网络建设时,运营商希望每比特信息量的传输成本得到降低,从光纤通信的发展历程来看,提高单信道的传输速率是一个不错的选择,根据已往的经验,单信道传输速率提高4倍,每比特的传输成本能降低30%到40%。另一方面,从网络维护的成本考虑,对于长距离传输的密集波分系统而言,传输同样的信息流量,采用40Gbit/s速率的单信道比10Gbit/s速率的单信道占用的波道数量会有一定程度的减少,波道数量的减少能够有效降低网络运维产生的成本。
从业务需求的角度来看,各种新型电信业务的出现对传输网带宽提出了更高的要求,比如宽带上网、视频应用以及无线3G业务等大带宽应用的迅速普及,使运营商对通信网络的带宽需求在迅猛增长,以P2P为代表新的互联网应用的普及导致IP流量持续快速增加,高达75%到125%的数据增长率,已经使全球因特网的骨干网带宽已达到了6~9个月就翻一番的地步。提高光通信的传输容量有两个方面的途径:一是在一对光纤上传送多个光信道,即波分复用(WDM)方式;二是提高单个光信道的传输速率,单通道的传输速率已经从最初的8Mbit/s提高到目前的10 Gbit/s(STM-64),下一步将向40 Gbit/s(STM-256)发展。
二、40Gbit/s光纤传输系统技术发展
40Gbit/s光通信系统能否实现商用,一个关键因素是看能否实现长距离传输,实现长距离传输会遇到诸多光学和电子学领域的问题。当信号速率达到40Gbit/s时,光信号会受到色度色散、偏振模色散、非线性效应、光信噪比等光学特性方面的限制。在40Gbit/sSDH系统设备上,需要考虑40Gbit/s信号的成帧技术,光传输码型和调制方式的选择,以及大容量交叉芯片技术等。下文主要对40Gbit/sSDH光纤传输系统涉及的关键技术进行一下介绍:
(1)STM-256成帧处理技术
国际电信联盟ITU-T2000年发布了新的G.707标准,建议中规定了STM-256 的帧结构、复用路径和复用结构。由于STM-256 帧结构很长,且由4 路STM-64 信号按长度为64 字节块间插复接而成,电路规模十分庞大,至少相当于4 路STM-64 成帧器芯片。一路STM-64 成帧器芯片电路规模已十分庞大,实现已不容易,STM-256 成帧的难度更大。
(2)40Gbit/s超高速信号的调制解调技术
40Gbit/s系统中选用的光调制器以及光信号的码型对40Gbit/s 信号的传输距离和传输效率有着重大的影响。在10 Gbit/s 及其以下速率的系统中,一般采用的是非归零(NRZ)编码格式。因为NRZ 码实现比较简单,技术比较成熟。在超长距离10 Gbit/s 及40 Gbit/s 系统中,归零(RZ)编码技术也开始采用。RZ 码是一种更为有效的编码格式,它具有有利于时钟恢复,比NRZ 编码具有更高的峰值功率,不易受到非线性失真和偏振模色散的影响等优点,但RZ码调制一般要有两个调制器,成本高,复杂性大。目前也在研究一些新的调制码型,主要有CS-RZ(载波抑制的归零码)、RZ-DPSK(差分相移键控归零码)等。由于40 Gbit/s 系统对调制器的要求更高,要求这些调制器具有高调制带宽、高消光比、低回损、高饱和功率和低驱动电压。对于40Gbit/s 传输系统,尚无直接调制的光源可用,必须采用外调制器。